环球实时:风力摆控制实践平台怎么设计?

最近这段时间总有小伙伴问小编风力摆控制实践平台设计是什么,小编为此在网上搜寻了一些有关于风力摆控制实践平台设计的知识送给大家,希望能解答各位小伙伴的疑惑。

作者 吴振宇 李胜铭 高元龙 李超 殷殷 大连理工大学 创新创业学院(辽宁 大连 116024)


【资料图】

吴振宇(1971-),男,博士,副教授,研究方向:嵌入式系统、智能控制、机器人等领域。

摘要:本文主要讲述利用Coretx-M4单片机控制风力摆运动轨迹的实现方法。系统根据当前加速度、角速度及图像信息,利用闭环控制算法调节电机,实现风力摆直线摆动、圆周摆动及定点静止等功能。系统响应速度快,控制精度高,交互操作界面简单易用,具有良好的交互性。

引言

风力摆系统的摆体由风扇构成,通过调整风扇的转速实现摆动位置及摆动路线的控制,由于摆动机构的滞后性,实现精确控制具有一定难度。通过合理的摆结构设计,并利用摆线理论建模,设计并优化控制策略,利用闭环结构提升摆的轨迹运动准确性。系统对风摆控制参数设定、抗扰因素测试等惯性滞后问题解决具有借鉴意义,同时也为分析该类问题建立了直观的测试平台。

1 系统结构

本系统硬件部分主要由电源模块、MCU模块、姿态采集模块、电机驱动模块、风力摆机械部分等组成。机械部分为万向节悬挂65cm硬质杆,底端连接4个风机构成风机组,中心固定姿态采集模块。MCU使用I2C协议采集姿态模块的数据,MCU根据设定值利用PID控制理论,通过控制PWM占空比来控制 4个风机的转速和方向,实现对风力摆的控制,整体系统结构如图1所示。

1.1 电源模块

7.2V /2000mAh镍镉电池为MCU模块、传感器模块和显示模块供电。

学生电源输出6V稳压,为四路电机驱动供电。

1.2 MCU模块

MCU模块是核心部分,负责数据处理。有以下功能:

负责读取风摆角度数据,将加速度、角速度信息进行互补滤波和四元数转化,计算当前风力摆角度信息;

负责读取摄像头图像信息,对数据进行去噪点化处理后提取标志物边缘,计算得出标志物中心点位置;

负责控制电机驱动模块,利用PID闭环控制算法调节电机转速和方向,实现对风力摆运动轨迹的控制。

1.3 姿态采集模块

姿态采集模块是整个控制系统的关键组成部分,本系统采用整合性六轴陀螺仪加速度计芯片,负责检测风力摆的加速度角速度信息[1]

1.4 电机驱动模块

电机驱动模块为双BTN7960组成的H桥电机驱动,根据MCU控制器输出的PWM信号和方向信息,控制空心杯电机的转速和方向。

1.5 摄像头模块

摄像头模块是系统的特殊功能部分,为实现摆头跟随目标物而设计。摄像头采集图像,并对目标物进行识别,进而实现对目标物的跟随。

2 系统理论分析与计算

2.1 风力摆状态的测量与计算

采用高精度的加速计和陀螺仪MPU6050,不断采集风力摆姿态数据。MPU6050对陀螺仪和加速度计分别用了三个16位的ADC,将其测量的模拟量转化为可输出的数字量,通过DMP处理器读取测量数据,然后通过I2C总线输出,得到风摆的姿态角度。

2.2 风力摆控制分析

风力摆通过4只空心杯电机提供驱动推力,姿态采集模块采集风力摆当前姿态角,单片机处理姿态角,调节4个电机PWM的比例,从而控制下一时刻风机工作状态,实现对于风力摆的控制[3]

在自由单摆模型中,单摆做简谐运动的周期跟摆长的平方根成正比,跟重力加速度的平方根成反比,跟振幅、摆球的质量无关[6]

(1)

风摆摆长确定后,周期也就确定,如图2所示,根据自由单摆简谐运动的特性,利用三角函数关系[4~5],风摆跟随自然周期做出单摆的运动,加上X、Y方向,两个方向运动相位差90度,如图3所示,风摆就能做出圆周运动。

在处理风力摆模型时,可认为是控制每一时刻风力摆的姿态角,从而控制类自由摆运动和圆周运动。当物体离开垂直的平衡位置之后,便会受到重力与悬线的作用合力,驱动重物回复平衡位置。这个力称之为回复力,公式为。

2.3 控制算法的分析

本系统采用PID算法来控制风机转动的速度[2]。风机开始工作后,姿态采集模块不断采集当前风力摆姿态角状态,并与之前的状态比较,使得风力摆的运动状态逐渐趋向于平稳。PID算法控制器由角度比例P、角度误差积分I和角度微分D组成。

其输入e(t)与输出U(t)的关系为:

 (2)

它的传递函数为:

(3)

3 电路与程序设计

3.1 电路设计

3.1.1 电源

7.2V蓄电池电源经LT1529-5稳压得到5V电源,再经过两片LT1085电源芯片稳压得到两路3.3V电源,一路单独供电MCU,一路供电其它外设。主控板电源原理如图4所示。