微头条丨三星Note7虹膜识别的工作原理是什么?手机应用虹膜解锁是否实用?

最近小编看到大家都在讨论解析三星Note7虹膜识别的工作原理相关的事情,对此呢小编也是非常的感应兴趣,那么这件事究竟是怎么发生的呢?具体又是怎么回事呢?下面就是小编搜索到的关于解析三星Note7虹膜识别的工作原理事件的相关信息,我们一起来看一下吧!


(资料图片仅供参考)

眼部图像的预处理

BMP图像文件格式主要有1、4、8、16、24和32位等图像格式。32位BMP图像文件格式表示该图像有232种颜色,图像中的每个像素用32位表示,一般情况下该文件格式没有调色版,32位中的最高8位保留,其余8位表示红色,8位表示绿色,8位表示蓝色。8位BMP图像文件表示该图像有256种颜色。图像中的每个像素用8位表示,并用这8位作为索引在彩色表中查找该像素的颜色,8位BMP图像一般也叫做灰度图像。

在本文获取到的图像是32位的彩色BMP图像。32位的彩色图像存储的图像色彩数据较多,图像文件的尺寸也较大。但是从本文图像识别的要求来看,这些都是不必要的,因此有必要将其转换为8位的灰度图像。

转换公式如下所示。

其中Gray (i, j)为转换后的黑白图像在(i,j)点处的灰度值,由于公式中绿色所占的比重最大,所以转换时可以自接使用G值作为转换后的灰度。转换后的灰度图像如所示。从图像上看与32位RGB图像没有大的不同,但是图像文件的尺寸从1.17Mb缩小到了301Kb。

人眼部图像的灰度图像

将获取到的眼部图像转换为灰度图像之后,还需要对灰度图像进行去噪声处理。本文采用的是空域法中的加权均值滤波,它是用一个有奇数点的滑动窗口在图像上滑动,将窗口中心点对应的图像像素点的灰度值用窗口内的各个点的灰度值的平均值代替,如果滑动窗口规定了在取均值过程中窗口各个像素点所占的权重,也就是各个像素点的系数。

提取虹膜图像

此过程需要读取眼部图像的数据,检测虹膜图像的内外边缘,提取内圆圆心坐标及短半径,再求出虹膜长半径,建立极坐标系,分离虹膜图像,最后进行特征提取。

和眼睛的其他部分相比,瞳孔的灰度值要小得多,也就是颜色要暗得多,而且在灰度级上有一个明显的突变,也就是说在瞳孔的灰度级要比其他部分的灰度级“黑得多”。因此,可以充分利用这个特性,对图 2进行直方图分析,结果如图 4所示。

灰度直方图

对计算结果可以得出,图像灰度值从 62开始,且图中存在若干个峰值点。我们已知瞳孔的颜色最暗,因此可以判定第一个波峰为瞳孔的灰度分布。具体观察第一个峰值,其基本呈正弦函数状分布,以72为波峰(值:884),左侧62(值:0)为波谷,1/4 周期为10。据此,我们确定右侧的波谷为82。根据分析结果,对图 4进行二值化,阈值为 82,可以求出虹膜的长半径,如所示。

虹膜长半径

三、手机虹膜识别

手机应用虹膜解锁是否实用

既然前面网友问到了是否靠谱的问题,那么我们就接着这个问题来延伸着谈一谈,不考虑技术问题,如果虹膜解锁能够克服环境的影响,那么将其应用在手机中还是比较实用的。

如果可以实现百分百的识别,从生物特性来说,虹膜解锁,要比指纹扫描、Touch ID更加安全,理论上来说,只有DNA才能超过它。在人体生物特征识别领域,认假率是十分重要的指标,它的数值越低,就代表识别越精确,也就越能减少出错的可能性。虹膜识别的认假率为1/1500000,而TouchID的认假率为1/50000。而从唯一性来说,当人到两岁以后,人类眼睛的虹膜就几乎不会再发生变化,所以将虹膜作为“密码”有着更好的“长期安全性”。

关键词: 虹膜识别