环球即时看!arm的协处理器有几个?ARM协处理器详解?
提起arm的协处理器有几个?ARM协处理器详解大家在熟悉不过了,被越来越多的人所熟知,那你知道arm的协处理器有几个?ARM协处理器详解吗?快和小编一起去了解一下吧!
(资料图片)
ARM概述
ARM处理器是英国Acorn有限公司设计的低功耗成本的第一款RISC微处理器。全称为AdvancedRISCMachine。ARM处理器本身是32位设计,但也配备16位指令集,一般来讲比等价32位代码节省达35%,却能保留32位系统的所有优势。
ARM的Jazelle技术使Java加速得到比基于软件的Java虚拟机(JVM)高得多的性能,和同等的非Java加速核相比功耗降低80%。CPU功能上增加DSP指令集提供增强的16位和32位算术运算能力,提高了性能和灵活性。ARM还提供两个前沿特性来辅助带深嵌入处理器的高集成SoC器件的调试,它们是嵌入式ICE-RT逻辑和嵌入式跟踪宏核(ETMS)系列。
ARM处理器特点
1、体积小、低功耗、低成本、高性能;
2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;
3、大量使用寄存器,指令执行速度更快;
4、大多数数据操作都在寄存器中完成;
5、寻址方式灵活简单,执行效率高;
6、指令长度固定。
ARM主要模式
处理器工作模式说明
用户模式(usr)ARM处理器正常的程序执行状态
系统模式(sys)运行具有特权的操作系统任务
快中断模式(fiq)支持高速数据传输或通道处理
管理模式(svc)操作系统保护模式
数据访问终止模式(abt)用于虚拟存储器及存储器保护
中断模式(irq)用于通用的中断处理
未定义指令终止模式(und)支持硬件协处理器的软件仿真
除用户模式外,其余6种模式称为非用户模式或特权模式;用户模式和系统模式之外的5种模式称为异常模式。ARM处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。
arm的协处理器有几个
ARM可支持多达16个协处理器,主要的作用:ARM处理器初始化,ARM与协处理器的数据处理操作,ARM的寄存器与协处理器的寄存器之间传送数据,以及ARM协处理器的寄存器和存储器之间传送数据。共有5条:
-CDP协处理器数据操作指令
-LDC协处理器数据加载指令
-STC协处理器数据存储指令
-MCRARM的寄存器到协处理器的寄存器的数据传送
-MRC协处理器的寄存器到ARM的寄存器的数据传送
1、CDP指令
CDP指令的格式为:
CDP{条件}协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。
CDP指令用于ARM处理器通知ARM协处理器执行特定的操作,若协处理器不能成功完成特定的操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器和源寄存器均为协处理器的寄存器,指令不涉及ARM处理器的寄存器和存储器。
指令示例:
CDPP3,2,C12,C10,C3,4;该指令完成协处理器P3的初始化
2、LDC指令
LDC指令的格式为:
LDC{条件}{L}协处理器编码,目的寄存器,[源寄存器]
LDC指令用于将源寄存器所指向的存储器中的字数据传送到目的寄存器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。
指令示例:
LDCP3,C4,[R0];将ARM处理器的寄存器R0所指向的存储器中的字数据传送到协处理器P3的寄存器C4中。
3、STC指令
STC指令的格式为:
STC{条件}{L}协处理器编码,源寄存器,[目的寄存器]
STC指令用于将源寄存器中的字数据传送到目的寄存器所指向的存储器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。
指令示例:
STCP3,C4,[R0];将协处理器P3的寄存器C4中的字数据传送到ARM处理器的寄存器R0所指向的存储器中。
4、MCR指令
MCR指令的格式为:
MCR{条件}协处理器编码,协处理器操作码1,源寄存器,目的寄存器1,目的寄存器2,协处理器操作码2。
MCR指令用于将ARM处理器寄存器中的数据传送到协处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,源寄存器为ARM处理器的寄存器,目的寄存器1和目的寄存器2均为协处理器的寄存器。
指令示例:
MCRP3,3,R0,C4,C5,6;该指令将ARM处理器寄存器R0中的数据传送到协处理器P3的寄存器C4和C5中。
5、MRC指令
MRC指令的格式为:
MRC{条件}协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。
MRC指令用于将协处理器寄存器中的数据传送到ARM处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器为ARM处理器的寄存器,源寄存器1和源寄存器2均为协处理器的寄存器。
指令示例:
MRCP3,3,R0,C4,C5,6;该指令将协处理器P3的寄存器中的数据传送到ARM处理器寄存器中.
CP14调试通信通道协处理器
调试通信通道协处理器DCC(theDebugCommunicaTIonsChannel)提供了两个32bits寄存器用于传送数据,还提供了6bits通信数据控制寄存器控制寄存器中的两个位提供目标和主机调试器之间的同步握手。
此控制寄存器中的两个位提供目标和主机调试器之间的同步握手:
位1(W位)从目标的角度表示通信数据写入寄存器是否空闲:
W=0目标应用程序可以写入新数据。
W=1主机调试器可以从写入寄存器中扫描出新数据。
位0(R位)从目标的角度表示通信数据读取寄存器中是否有新数据:
R=1有新数据,目标应用程序可以读取。
R=0主机调试器可以将新数据扫描到读取寄存器中。
注意:
调试器不能利用协处理器14直接访问调试通信通道,因为这对调试器无意义。但调试器可使用扫描链读写DCC寄存器。DCC数据和控制寄存器可映射到EmbeddedICE逻辑单元中的地址。若要查看EmbeddedICE逻辑寄存器,请参阅您的调试器和调试目标的相关文档。
通信数据读取寄存器
用于接收来自调试器的数据的32位宽寄存器。以下指令在Rd中返
回读取寄存器的值:
MRCp14,0,Rd,c1,c0
通信数据写入寄存器
用于向调试器发送数据的32位宽寄存器。以下指令将Rn中的值写
到写入寄存器中:
MCRp14,0,Rn,c1,c0
注意
有关访问ARM10和ARM11内核DCC寄存器的信息,请参阅相应的技术参考手册。ARM9之后的各处理器中,所用指令、状态位位置以及对状态位的解释都有所不同。
目标到调试器的通信
这是运行于ARM内核上的应用程序与运行于主机上的调试器之间的通信事件顺序:
1.目标应用程序检查DCC写入寄存器是否空闲可用。为此,目标应用程序使用MRC指令读取调试通信通道控制寄存器,以检查W位是否已清除。
2.如果W位已清除,则通信数据写入寄存器已清空,应用程序对协处理器14,使用MCR指令将字写入通信数据写入寄存器。写入寄存器操作会自动设置W位。如果W位已设置,则表明调试器尚未清空通信数据写入寄存器。此时,如果应用程序需要发送另一个字,它必须轮询W位,直到它已清除。
3.调试器通过扫描链2轮询通信数据控制寄存器。如果调试器发现W位已设置,则它可以读DCC数据寄存器,以读取应用程序发送的信息。读取数据的进程会自动清除通信数据控制寄存器中的W位。
以下代码显示了这一过程
AREAOutChannel,CODE,READONLY
ENTRY
MOVr1,#3;Numberofwordstosend
ADRr2,outdata;Addressofdatatosend
pollout
MRCp14,0,r0,c0,c0;Readcontrolregister
TSTr0,#2
BNEpollout;ifWset,registersTIllfull
write
LDRr3,[r2],#4;Readwordfromoutdata
;intor3andupdatethepointer
MCRp14,0,r3,c1,c0;Writewordfromr3
SUBSr1,r1,#1;Updatecounter
BNEpollout;Loopifmorewordstobewritten
MOVr0,#0x18;Angel_SWIreason_ReportExcepTIon
LDRr1,=0x20026;ADP_Stopped_ApplicaTIonExit
SVC0x123456;ARMsemihosting(formerlySWI)
outdata
DCB“Hellothere!”
END
调试器到目标的通信